<< Belajar membuat blogSalamat Datang Di Blog Saya >>

Rabu, 10 Januari 2018

PENGOLAHAN DATA SEISMIK

Urutan Pengolahan data seismic dapat berbeda – beda tergantung dari perangkat lunak yang digunakan. Namun secara garis besar urutan pengerjaan pengolahan data adalah sama. Secara umum tahap pengolahan data seismik adalah sebagai berikut :




PREPOCESSING

Sebelum kita melakukan pengolahan data, data lapangan harus kita proses awal dahulu. Pada dasarnya proses pengolahan awal (preprocessing) ini bertujuan untuk menyiapkan data yang bagus untuk proses pengolahan data yang belum distack.
Pada perangkat lunak ProMAX version 2003, sistem yang digunakan adalah UNIX. Oleh karena itu dalam mempelajarinya, layaknya perlu sedikit adanya pengenalan terhadap sistem ini.

1. Data Lapangan

Data seismik dalam bentuk digital direkam dalam pita magnetik dengan standar format tertentu. Standar format ini dilakukan oleh SEG (Society of Exploration Geophysics). Magnetic tape yang digunakan biasanya adalah 9 stack tape dengan format : SEG-A, SEG-B, SEG-C, SEG-Y.

Data seismik direkam dalam bentuk multiplex. Dalam bentuk ini susunan kolom matriks menyatakan urutan data dari masing – masing stasion penerima. Sedangkan barisnya menyatakan urutan data dari perekaman seismik. Untuk itu yang harus pertama kali dilakukan adalah demultiplexing data, yaitu mengurutkan kembali data seismik untuk masing-masing stasion penerima sehingga berupa trace seismik.

Secara matematis demultiplex dapat dilihat sebagai transpose matriks yang sangat besar sehingga kolom matriks transpose tadi terbaca sebagai rekaman trace seismik pada offset yang berbeda untuk setiap common shot point.

Pada pengolahan data seismik 2D yang dilakukan penulis kali ini data yang digunakan sudah diformat sedemikian rupa sehingga tidak perlu lagi dilakukan formating. Data yang diolah oleh penulis adalah dalam format SEG-Y.

Data lapangan yang dikerjakan dalam laporan ini memiliki konfigurasi sebagai berikut :
• Tipe spread : Single off end • Kedalaman airgun : 3 m
• Panjang streamer : 700 m • Kedalaman streamer : 10 m
• Streamer : 28 hydrophone • Sail line azimuth : 90°
• Sumber (source) : airgun • Jumlah tembakan : 3741
• Receiver : hydrophone • Interval tembakan : 25 m
• Multichannel : 28 kanal • Interval channel : 25 m



2. Instrument Dephase

Fungsi Instrument Dephase adalah untuk mengoreksi phase data trace terekam untuk menghilangkan noise yang diakibatkan oleh alat perekam atau geophone sewaktu merekam sinyal dari dalam bumi.
Pada pengolahan data seismik marine 2D yang dilakukan oleh penulis, data yang digunakan sudah dilakukan Instrument Dephase.

3. Geometry

Tahapan ini dimaksudkan untuk mendefinisikan geometri dari data yang telah di-loading agar sesuai dengan geometri penembakan pada akusisi data di lapangan.
Informasi operasional geometri dan spesifikasi konfigurasi dari sampel data Kerja Praktek ialah sebagaiberikut.

• Tipe spread : Single off end • Kedalaman airgun : 3 m
• Panjang streamer : 700 m • Kedalaman streamer : 10 m
• Streamer : 28 hydrophone • Near offset : 30 m
• Sumber (source) : airgun • Sail line azimuth : 90°
• Penerima (receiver) : hydrophone • Jumlah tembakan : 3741
• Seismik multichannel : 28 kanal • Interval tembakan : 25 m
• Nomor receiver pertama : 1 • Interval channel : 25 m
• Nomor receiver terakhir : 28

Flow Geometry :



Gambar Dataset “GEOM” FFID 1771.


4. Editing Sinyal

Selama proses akuisisi dilakukan seringkali hasil rekaman terganggu oleh beberapa sebab, seperti pembalikan polaritas, trace mati, berbagai jenis noise (Ground roll, koheren dan random noise) yang jika tidak dihilangkan terlebih dahulu akan sangat mengganggu dalam proses pengolahan data. Noise yang diakibatkan oleh Instrument dan geophone telah direduksi sebelumnya pada Instrument Dephase.

Dalam pengolahan data seismik ini penulis menggunakan 2 subflow utama dalam flow Editing ini yaitu :
• Trace Muting
Trace Nuting adalah pengeditan yang dilakukan dengan cara membuang/memotong bagian-bgian trace pada zona tertentu.
Ada tiga jenis mute yang biasa dilakukan yaitu : Top, Bottom dan Surgical Mute. Data lapangan terdiri dari beberapa jenis gelombang. Gelombang yang tidak dilibatkan dalam pengolahan data seismik refleksi akan dibuang. Even – even yang pertama direkam adalah Direct Wave yang dapat kita hilangkan dengan melakukan mute, yang dalam pengolahan data seismic 2D kali ini penulis lakukan. Untuk itu sebelumnya dilakukan pick terhadap tiap trace.

• Trace Kill/Reverse
Trace dengan data yang jelek sekali atau trace yang mati akan sangat sulit sekali untuk dikoreksi, karena itu akan kita buang (seluruh data dalam trace tersebut dibuat berharga nol).
Pada modul ProMAX, proses editing sinyal dilakukan berdasarkan hasil identifikasi trace pada keseluruhan data seismik dengan langkah-langkah sebagaiberikut.
“Display dataset (disortir dalam format FFID)  Picking > Kill Traces / Pick Top Mute  Buat/Pilih nama file, yaitu ‘KILL_trace’ untuk killing dan ‘TOP_MUTE’ untuk muting > OK  lakukan picking seluruh FFID  File > Save > File > Exit/Continue Flow”.

Untuk mengaplikasikan killing trace digunakan subflow Trace Killing/Reverse sedangkan untuk mengaplikasikan muting trace digunakan subflow Trace Muting. Flow dan spesifikasi parameter subflow yang digunakan dalam proses editing sinyal ialah sebagaiberikut.

Flow Editing :



Gambar Data seismik FFID 1771 sampai FFID 1775 setelah signal processing.


5. Dekonvolusi

Dekonvolusi adalah suatu proses untuk menghilangkan wavelet seismik sehingga yang tersisa hanya estimasi dari reflektifitas lapisan bumi.

Skema proses konvolusi dan dekonvolusi :


Dekonvolusi bertujuan untuk :
- Menghilangkan ringing
- Meningkatkan resolusi vertical
- Memperbaiki penampilan dari stacked section sehingga menjadi lebih mudah untuk diinterpretasi
- Seismic section menjadi lebih mirip dengan model geologi
- Menghilangkan multipel

Metoda-metoda Dekonvolusi

Secara garis besar metoda dekonvolusi dapat dibagi menjadi dua, yaitu deterministik dan statistik. Dekonvolusi deterministik adalah dekonvolusi menggunakan operator filter yang sudah diketahui atau didisain untuk menampilkan suatu bentuk tertentu. Contoh dekonvolusi deterministik adalah spiking deconvolution. Sementara jika disain filter tidak kita ketahui, kita dapat memperolehnya secara statistik dari data itu sendiri. Metoda ini disebut dekonvolusi statistik. Contoh dekonvolusi statistik adalah dekonvolusi prediktif.

Dekonvolusi Prediktif

Dekonvolusi prediktif dilakukan dengan cara mencari bagian-bagian yang bisa diprediksi dari trace seismik untuk kemudian dihilangkan. Dekonvolusi prediktif biasanya dipergunakan untuk
1. Prediksi dan eliminasi event-event yang berulang secara periodik seperti multipel perioda panjang maupun pendek.
2. Prediksi dan eliminasi ‘ekor’ wavelet yang panjang dan kompleks.

Dalam Kerja Praktek ini, metode dekonvolusi yang digunakan ialah metode dekonvolusi prediktif. Untuk mengaplikasikan proses dekonvolusi, perintah yang digunakan pada modul ProMAX ialah Spiking/Predictive Deconvolution. Namun sebelumnya perlu dilakukan tes parameter decon terlebih dahulu untuk mengetahui harga operator decon terbaik. Adapun flow dan spesifikasi parameter subflow proses dekonvolusi ialah sebagaiberikut.

Flow Deconvolution :




PROCESSING

1. Analisa Kecepatan

Kecepatan gelombang seismik dalam formasi bawah permukaan adalah salah satu informasi penting yang akan digunakan untuk konversi data seismik dari domain waktu ke kedalaman. Sumber data kecepatan yang paling akurat didapat dari pengukuran check-shot sumur tetapi metoda tersebut hanya dapat dilakukan pada area yang sangat dekat dengan lokasi sumur, pada kenyataannya interpretasi dilakukan pada area-area yang jauh dari lokasi sumur. Masalah lainnya adalah adanya struktur geologi yang kompleks sehingga menimbulkan variasi kecepatan terhadap kedalaman. Hal-hal tersebut dapat menimbulkan masalah dalam penentuan posisi struktur dan masalah pada waktu dilakukan proses migrasi. Oleh karena itu analisa kecepatan adalah suatu proses yang sangat penting dalam tahapan pemrosesan data seismik.

Dalam Kerja Praktek ini, metode analisis kecepatan yang digunakan ialah metode mengukur-kesamaan atau metode semblance. Metode ini menampilkan spektrum kecepatan dan CDP gather secara bersamaan. Pada modul ProMAX, skema dasar tahapan analisis kecepatan ialah seperti pada gambar berikut.



Pada gambar di atas, subflow Supergather Formation digunakan untuk membentuk suatu formasi paket CDP (CDP’s supergather) dengan input dataset yang telah didekonvolusi. Proses ini akan mengumpulkan CDP-CDP dengan trace header SG_CDP. Kemudian disiapkan data sebagai input untuk analisis kecepatan dengan menggunakan subflow Velocity Analysis Precompute. Dataset yang dihasilkan dengan nama “precompute_dataset” digunakan sebagai parameter input dalam subflow Disk Data Input. Didalam subflow ini juga dilakukan modifikasi trace header sesuai dengan definisi atribut supergather sebelumnya, yaitu pada menu Select Primary Trace Header Entry diisi dengan “SG_CDP”. Subflow yang terakhir ialah Velocity Analysis. Tabel kecepatan didefenisikan untuk menyimpan hasil picking kecepatan, yakni dengan nama ‘_Velan_’.

Flow Velocity Analysis :



2. Stacking

Stacking trace merupakan tahapan pengolahan data seismik dimana seluruh data trace seismik dikoreksi NMO kemudian di-stack (stacking).
Dalam proses stacking trace kecepatan yang digunakan ialah kecepatan stack. Kecepatan stacking dapat diperoleh dari hasil analisis kecepatan sebelumnya dengan melihat amplitudo stack yang paling optimum. Kecepatan ini seringkali disebut juga kecepatan NMO saja. Untuk jarak offset yang kecil, kecepatan stacking sama dengan kecepatan RMS.

Flow Stacking Trace :



Hasil akhir stacking trace ialah sebuah penampang seismik yang belum termigrasi atau dikenal dengan nama stacked section. Penampang ini ditampilkan dalam format wiggle trace, yakni format default display yang disediakan oleh ProMAX.

Gambar Penampang Seismik Hasil Stack (Stacked Section).


3. Migrasi

Migrasi adalah proses yang dilakukan untuk memindahkan data seismik ke posisi yang benar secara horisontal maupun vertikal. Ketidaktepatan posisi reflektor ini disebabkan oleh efek difraksi yang terjadi ketika gelombang seismik mengenai ujung/puncak dari suatu diskontinuitas akibat adanya struktur geologi, seperti lipatan atau sesar. Migrasi dilakukan dengan cara menggeser reflektor ke arah up-dip sepanjang garis kurva hiperbolik di mana bentuk dari hiperbola tersebut bergantung pada kecepatan medium tempat gelombang seismik tersebut merambat.

Dalam Kerja Praktek ini, proses migrasi yang dilakukan (secara keseluruhan) adalah post stack time migration (PSTM), yaitu migrasi dilakukan pada setiap event yang sudah dikoreksi NMO dan di-stack, serta di dalam domain time.

Metode migrasi yang digunakan dalam penelitian ini ialah metode F-K (frekuensi-bilangan gelombang). Pada modul ProMAX, subflow yang digunakan ialah Memory Stold F-K Migration. Dalam subflow ini digunakan tabel hasil picking analisis kecepatan sebelumnya. Output dataset hasil migrasi kemudian ditampilkan, yaitu berupa penampang seismik 2D yang dikenal dengan nama migrated section.

Flow Migration :



Gambar Penampang Seismik Hasil Migrasi (Migrated Section).


Gambar Penampang Seismik Stacked Section.


Gambar Penampang Seismik Setelah Migrasi F-K.



KESIMPULAN DAN SARAN

1. Kesimpulan

Dari proses pengolahan data sismik 2D menggunakan software ProMAX dapat disimpulkan beberapa hal sebagai berikut :


1. Pengolahan data seismik yang dilakukan bertujuan untuk memperoleh gambaran struktur geologi bawah permukaan yang mendekati keadaan sebenarnya dengan cara meningkatkan signal to noise ratio.


2. Hasil pengolahan data seismik sangat bergantung pada parameter – parameter dan metode-metode yang digunakan, sehingga untuk menghasilkan data dengan kualitas baik harus didukung oleh informasi geologi dan pengalaman dan kemampuan dari pemakaian software sangat mempengaruhi hasil yang didapat.


3. Pada software ProMAX terdapat berbagai metode yang memiliki kelebihan masing-masing dalam menentukan solusi untuk suatu data. Bila metode yang digunakan sesuai dengan karakteristik data, maka hasil yang didapat akan maksimal.


4. Kualitas dari data yang duhasilkan dipengaruhi juga oleh fakto human error. Misalnya dalam picking velocity pada analisis kecepatan.


2. Saran

Untuk mendapatkan hasil pengolahan data yang mencerminkan kondisi geologi yang sebenarnya, maka ada beberapa hal yang harus kita perhatikan :


1. Sesuaikan metode yang akan kita gunakan dengan karakteristik data, dengan melakukan tes terlebih dahulu,


2. Penting untuk memahami prinsip dari semua alur pengolahan yang kita kerjakan sehingga tidak hanya mengerti secara operasional saja tetapi juga dapat mengerti artinya,


3. Lakukan enhacement pada data, karena enhacement akan meningkatkan kualitas data dengan menghilangkan random noise yang tersisa sehingga hasil yang didapat lebih baik.



DATA PROCESSING 

Pemrosesan data seismik adalah untuk mengolah data hasil perekaman yang merupakan proses awal yang hanya membaca data produksi yang berada di dalam tape dari Labo. Data dari Labo tersebut kemudian diolah menggunakan data koordinat topografi, sehingga menghasilkan data berupa penampang melintang stack yang selanjutnya data ini akan diproses.

Data yang disimpan dalam disket berupa XPS (informasi nomor record, Shot Point, dan active channel), SEG (koordinat trace), SPS (informasi data mengenai uphole, waktu tembak, dan SP), RPS (informasi nomor trace dan koordinat), OBS (data seperti laporan), dan RAW (informasi mengenai kegiatan Labo).
Tahapan awal dalam pemrosesan data adalah pengecekan terhadap data yang terekam dalam cartridge, disket, dan observer report. Setelah itu dilakukan proses geometri yaitu pemberian titik koordinat pada data tersebut. Kemudian dilakukan pengecekan terhadap posisi penembakan.
Setelah data mengalami pengecekan dan sesuai dengan kondisi semestinya, dilakukan tahap preprocessing yaitu proses penyempurnaan data dengan cara true amplitudo recovery dan deconvolution. Tahapan selanjutnya dengan melakukan velocity analysis, NMO, dan terakhir proses brute satck. Penampang brute stack ini menampilkan model struktur lapisan bumi berdasarkan domain waktu.
Ada beberapa contoh peranan topografi terhadap pengolahan data seismik antara lain:

1. Kontrol geometri
Sebagai contoh pemrosesan data memerlukan koordinat berformat SEG untuk penentuan quality control geometri yang akan berpengaruh pada hasil stack (penjumlahan record dari tiap trace yang berada pada CDP yang sama).

2. Koreksi statik
Koreksi statik ini menggunakan elevasi yang diukur oleh topografi. Koreksi ini dilakukan untuk menyamakan datum dari receiver sehingga diperoleh arrival time yang terletak pada satu bidang horizontal yang sama.

3. Plotting final stack
Pada plotting final stack dibutuhkan data crossing line yang berfungsi untuk mengikat antara 2 line yang saling berpotongan. Lebih jauh lagi data crossing line ini dibutuhkan interpreter untuk menginterpretasi awal supaya interpreter dapat melihat penampang seismik baik itu secara inline maupun crossline secara tepat.

Hasil akhir dari pemrosesan data adalah berupa hasil stack yang merupakan gambaran yang berada di bawah permukaan yang terekam oleh receiver dimana noise-noise yang ada sudah difilter, sehingga hasil final stack ini dapat diinterpretasi lebih lanjut oleh interpreter.


Adapun untuk seismik 3D sebelum dilakukan pemrosesan, ada suatu program yang berfungsi sebagai simulasi cakupan program penembakan yang dilakukan dengan menggunakan software Messa. Pada seimik 3D juga tidak boleh ada titik yang hilang atau tidak ditembak, sehingga kalau perlu titik yang hilang tersebut diganti. Aturan penempatan titik pengganti ini disimulasikan oleh Messa untuk mendapatkan lokasi yang optimal, dan tentunya berkoordinasi dengan topo mengenai lokasi di lapangan dari titik tersebut.
Proses data seismik meliputi tahap persiapan data, pre-processing, processing dan post-processing. Perangkat lunak yang dipergunakan adalah:


1. ProMAX 2003 ver. 3,3 (perangkat lunak pengolahan data seismik),
2. SDI (perangkat lunak plotting)
3. GMG Millenium Version 5.4 (perangkat lunak perhitungan Refraction Static).
Sedangkan perangkat keras yang digunakan adalah:
1. Sun Blade 2000
2. Cartridge Drive 3490E
3. Exabyte Drive
4. Oyo Plotter GS-624
5. RAM 4 GB
6. External Harddisk 300 GB
7. Internal Harddisk 73.4 GB
8. PC Pentium IV/1.8 GHz, serta UPS 6 Kva.


PROCESSING 

Pada awalnya data seismik direkam dalam common-shot gather. Common-shot gather adalah sekumpulan trace yang mempunyai atau berasal dari satu source point yang sama. Karena pada umumnya pengolahan data seismik dilakukan pada domain common-midpoint (CMP), maka data common-shot gather tadi disusun dan di-sort ke bentuk CMP gather. CMP gather adalah sekumpulan trace yang memiliki titik tengah (midpoint) yang sama. Sebelum proses stacking, masing-masing CDP gather dikoreksi dari efek perbedaan jarak offset yang disebut Normal Move Out (NMO). Sebuah fungsi kecepatan yang disebut stacking velocity dibutuhkan dalam koreksi NMO. Stacking velocity didapat dari sebuah proses yang disebut velocity analysis.

Velocity Analysis adalah perhitungan dan penentuan fungsi kecepatan (stacking velocity) dari pengukuran fungsi velocity normal move out. Perhitungan dibuat dengan mengasumsikan fungsi kecepatan normal moveout (VNMO), menerapkannya ke CDP gather, mengukur koherensi pada fungsi VNMO tersebut, dan mengubah fungsi VNMO untuk mencari koherensi maksimal. Nilai-nilai koherensi ini diukur, dipetakan dan diberi skala warna untuk proses velocity picking. Nilai-nilai koherensi yang telah dikontur disebut juga dengan semblance.


Agar didapatkan nilai kecepatan yang tepat, maka picking velocity harus berdasarkan pada tampilan beberapa panel yang muncul ketika melakukan picking velocity seperti panel Semblance, panel CDP gather, panel Velocity Function Stack (VFS) dan panel Dynamic Function dimana keempat panel tersebut mempunyai fungsi masing-masing yang dapat mempengaruhi hasil pemilihan kecepatan.


Semblance panel menampilkan nilai-nilai koherensi dari berbagai trace dalam kontur skala warna sebagai fungsi waktu dan kecepatan. Warna kontur merah melambangkan nilai semblance maksimum, sehingga melambangkan juga fungsi kecepatan NMO yang paling tepat untuk mengkoreksi event seismik yang menghasilkan koherensi. Semblance panel digunakan untuk menentukan fungsi stacking velocity, dengan cara memilih nilai-nilai semblance yang paling tepat.


Gather panel juga digunakan dalam menentukan fungsi kecepatan. Gather panel menampilkan super gather dari sejumlah CDP yang telah ditentukan. Super gather didapat dari sejumlah CDP yang masing-masing tracenya di-stack secara common-offset, sehingga menghasilkan hanya satu CDP gather, yaitu super gather.
Panel yang menampilkan deret trace-trace dari beberapa CDP yang telah di-stack disebut panel Velocity Function Stack (VFS). Trace-trace ini dikoreksi untuk NMO dengan masing-masing menggunakan fungsi kecepatan yang berbeda. Panel ini digunakan untuk memilih fungsi kecepatan yang memberi respon data stack yang maksimum. Sehingga panel ini juga bisa dijadikan sebagai referensi untuk melihat hasil koreksi NMO setelah diterapkan nilai kecepatan dari proses picking velocity. Jika fungsi kecepatan yang digunakan tepat, event seismik primer dalam gather panel akan terlihat datar. Jika kecepatan yang digunakan terlalu rendah, maka event seismik primer dalam gather panel akan melengkung ke atas, sedangkan jika kecepatan yang digunakan terlalu tinggi, maka akan melengkung ke bawah
Panel Dynamic Stack menampilkan pendekatan data stack yang dihitung dengan menggunakan fungsi kecepatan yang telah dipilih. Panel ini digunakan sebagai kontrol kualitas (QC) dari fungsi kecepatan yang dipilih. Keempat panel velocity analysis tersebut digunakan sebagai acuan atau patokan dalam menentukan NMO velocity yang paling tepat untuk digunakan dalam proses stacking.
Hasil akhir dari flow ini adalah suatu penampang post-stack, yang biasa disebut brute stack. Penampang ini, pada dasarnya merupakan penampang post-stack yang pertama kali dihasilkan dari suatu pengolahan data seismik dan disebut sebagai stack kasar (“brute stack”) karena belum mendapat efek-efek lain dari pengolahan data seismik. Selain itu, parameter kecepatan yang digunakan dalam brute stack ini juga belum sepenuhnya tepat. Brute stack ini dihasilkan hanya untuk melihat gambaran awal dari suatu event seismik. 


POST PROCESSING

Proses yang dilakukan pada tahap post-processing meliputi:

1. Koreksi Residual Statik
Dalam flow ini akan dilakukan koreksi statik sisa, yang disebut residual statics correction. Input dari flow ini pada dasarnya adalah koreksi statik ketinggian dari source dan receiver yang telah dihasilkan sebelumnya dari subflow apply elevation statics di dalam flow refraction statics. Sebelum masuk ke residual statics, flow pengolahan data seismik masuk dulu ke trace display, agar dapat dilakukan static horizon picking yang nantinya akan digunakan sebagai time gate pada pengaplikasian koreksi statik sisa tersebut.
Static horizon picking dilakukan dengan membuat picks untuk satu ensemble traces pada suatu time, dimana pada time tersebut diperkirakan akan terdapat event seismik yang utama/dominan.

Setelah dilakukan picking autostatic horizon, kemudian hasil dari koreksi residual static ini diaplikasikan kembali ke data preprocessing untuk di hitung ulang nilai kecepatannya melalui analisa kecepatan tahap 2. Sehingga, setelah melalui tahapan proses ini diharapkan data-data yang dihasilkan benar-benar sudah terkoreksi secara benar dan menghasilkan penampang seismik yang benar-benar merepresentasikan keadaan bawah permukaan bumi dengan tepat. Adapun tampilan dari hasil residual static serta analisa kecepatan ke-2 ini dapat ditampilkan / di-display ke dalam display Final Stack.

2. Migrasi
Untuk mengkoreksi letak titik refleksi pada posisi sebenarnya maka digunakanlah metode migrasi. Dalam flow ini akan dilakukan serangkaian tahap untuk mengaplikasikan proses migrasi pada data, sehingga akan dihasilkan dataset terakhir dari pengolahan data seismik ini berupa data yang telah dimigrasi (migrated data). Algoritma migrasi yang akan diaplikasikan dapat dipilih sendiri oleh user, disesuaikan dengan kebutuhan dan treatment dari data yang bersangkutan. Dalam panduan ini, metode yang akan digunakan untuk migrasi adalah dengan menerapkan postack time migration menggunakan finite difference time migration dengan max dip 70 derajat. Pemilihan ini didasarkan pada hasil pemilihan atau try & error pemilihan parameter.
Sampai dengan tahap ini telah selesai dilakukan serangkaian tahap dalam melakukan pengolahan data seismik postack time migration untuk tahap dasar, yaitu dari pembacaan raw data seismik sampai dengan dihasilkannya data postack yang telah di migrasi.
Pada penampang postack hasil migrasi tersebut diatas, sangat terlihat adanya efek smile atau swing. Efek tersebut dapat disebabkan oleh adanya noise dominan yang belum dibersihkan secara optimal pada saat proses trace editing. Adanya hal tersebut sekaligus untuk menunjukkan kepada pembaca bahwa kurang optimalnya (atau bahkan kesalahan) dalam pengolahan data seismik di suatu tahap (atau flow) akan sangat mempengaruhi hasil pengolahan dari tahap lainnya, hingga pada akhirnya kesalahan-kesalahan itu akan terakumulasi pada hasil akhir pengolahan data seismik, yang dalam konteks ini adalah penampang postack hasil migrasi.
Sebagai tahapan akhir dari field processing, dilakukan suatu tahapan akhir berupa plotting, dimana plotting ini dilakukan sebagai alat untuk menampilkan hasil akhir data berupa penampang seismik dalam bentuk wiggle lengkap dengan attribut-atribut keterangan yang menyertainya.